首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1540篇
  免费   134篇
  国内免费   163篇
  2024年   1篇
  2023年   43篇
  2022年   36篇
  2021年   49篇
  2020年   54篇
  2019年   92篇
  2018年   72篇
  2017年   61篇
  2016年   73篇
  2015年   52篇
  2014年   79篇
  2013年   91篇
  2012年   56篇
  2011年   55篇
  2010年   45篇
  2009年   88篇
  2008年   79篇
  2007年   91篇
  2006年   86篇
  2005年   57篇
  2004年   63篇
  2003年   67篇
  2002年   63篇
  2001年   42篇
  2000年   31篇
  1999年   35篇
  1998年   27篇
  1997年   21篇
  1996年   22篇
  1995年   24篇
  1994年   17篇
  1993年   29篇
  1992年   12篇
  1991年   20篇
  1990年   18篇
  1989年   12篇
  1988年   11篇
  1987年   7篇
  1986年   10篇
  1985年   8篇
  1984年   7篇
  1983年   3篇
  1982年   5篇
  1981年   5篇
  1980年   5篇
  1979年   5篇
  1978年   3篇
  1977年   1篇
  1976年   3篇
  1958年   1篇
排序方式: 共有1837条查询结果,搜索用时 46 毫秒
1.
Metabolism is recognized as an important driver of cancer progression and other complex diseases, but global metabolite profiling remains a challenge. Protein expression profiling is often a poor proxy since existing pathway enrichment models provide an incomplete mapping between the proteome and metabolism. To overcome these gaps, we introduce multiomic metabolic enrichment network analysis (MOMENTA), an integrative multiomic data analysis framework for more accurately deducing metabolic pathway changes from proteomics data alone in a gene set analysis context by leveraging protein interaction networks to extend annotated metabolic models. We apply MOMENTA to proteomic data from diverse cancer cell lines and human tumors to demonstrate its utility at revealing variation in metabolic pathway activity across cancer types, which we verify using independent metabolomics measurements. The novel metabolic networks we uncover in breast cancer and other tumors are linked to clinical outcomes, underscoring the pathophysiological relevance of the findings.  相似文献   
2.
3.
Experimental evidence regarding the responses of cereal aphids to rising atmospheric CO2 has been ambiguous. Some studies suggest increased population sizes under future CO2 levels, others suggest decreased population sizes, and still others suggest little or no difference. Recently, Newman et al. (2003) constructed a general mathematical model of the aphid–grass interaction to investigate whether or not we should, in fact, expect a general aphid response to rising CO2. They concluded that aphid populations are likely to be larger under future CO2 concentrations if soil N levels are high, the aphid species' nitrogen requirement is low and the aphid species' density‐dependent response in winged morph production is weak. In that model, and in field experiments, CO2 concentration influences aphid population dynamics through the effect it has on plant quality. However, future CO2 concentrations are also likely to be accompanied by higher ambient temperatures, a combination that has received little focus to date. In the present paper, the Newman et al. model is used to consider the combined effects of increased CO2 concentrations and temperature on aphid population sizes. It is concluded that, when both factors are elevated, aphid population dynamics will be more similar to current ambient conditions than expected from the results of experiments studying either factor alone. This result has important implications for future experimentation.  相似文献   
4.
Abstract Increasing atmospheric CO2 may result in alleviation of salinity stress in salt-sensitive plants. In order to assess the effect of enriched CO2 on salinity stress in Andropogon glomeratus, a C4 non-halophyte found in the higher regions of salt marshes, plants were grown at 350, 500, and 650 cm3 m?3 CO2 with 0 or 100 mol m?3 NaCl watering treatments. Increases in leaf area and biomass with increasing CO2 were measured in salt-stressed plants, while decreases in these same parameters were measured in non-salt-stressed plants. Tillering increased substantially with increasing CO2 in salt-stressed plants, resulting in the increased biomass. Six weeks following initiation of treatments, there was no difference in photosynthesis on a leaf area basis with increasing CO2 in salt-stressed plants, although short-term increases probably occurred. Stomatal conductance decreased with increasing CO2 in salt-stressed plants, resulting in higher water-use efficiency, and may have improved the diurnal water status of the plants. Concentrations of Na+ and Cl? were higher in salt stressed-plants while the converse was found for K +. There were no differences in leaf ion content between CO2 treatments in the salt-stressed plants. Decreases in photosynthesis in salt-stressed plants occurred primarily as a result of decreased internal (non-stomatal) conductance.  相似文献   
5.
Azra Tufail 《Hydrobiologia》1987,148(3):245-255
Sediment cores were set up to study microbial colonisation and interactions on marine sand grains under enrichment conditions. Cores were enriched with photosynthetic media in the light and dark (PL, PD) and heterotrophic media in the light and dark (HL, HD), and were incubated for 25 days. Sediment chlorophylls were then measured by acetone extraction, viable heterotrophic bacteria by plate counts, and numbers of cells mm–2 sand grain surface by s.e.m. Chlorophyll a occurred in all sediments but was highest in the PL sediment. Bacteriochlorophyll a was only observed in the HL sediment. Heterotrophic viable counts were high in the HL and HD sediments. Dense growth of diatoms and blue-green algae, and a marine fungal Thraustochytrid sp. occurred on PL grains. The blue-green alga Schizothrix was often associated with the diatom Amphora on PL grains. Many different bacteria grew on HL and HD grains and some unusual colony and cell morphologies were recorded (Caulobacter, Flexibacter, polymer strands). Characteristic flakey material sometimes occurred in hollows on grains. The results are discussed in relation to microbial communities in low energy sedimentary environments.  相似文献   
6.
7.
Diurnal variation in ion content of the solution bathing roots of two plants growing together in sand culture was analysed for three pairs of grass-legume species (Lolium multiflorum andTrifolium pratense; Zea mays andGlycine hispida; Avena sativa andVicia sativa) and their monospecific controls. Biomass and nitrogen content of plants were determined. Ion concentration (NO 3 , NO 2 , NH 4 + , and K+) and pH of root solutions were measured for Lolium-Trifolium plant pairs and controls at 6 hours intervals over 36 h, starting at 8 am within a circadian cycle. Root solutions were regularly depleted in NO 3 by the grasses (Lolium-Lolium control) throughout the cycle. For associations involving the legume (Lolium-Trifolium and Trifolium-Trifolium), NO 3 depletion was followed by NO 3 enrichment at night, from late afternoon to early morning; the enrichment was more marked for the Lolium-Trifolium association. Solutions which did not contain NO 2 ions, were enriched by trace amounts of NH 4 + ions, largely depleted in K+ and alkalanized for all associations throughout the cycle. Repeating the experiment with the three pairs of species at the vegetative phase of development confirmed the previous results: NO 3 enrichment during the night for associations with legumes. When the experiment was repeated with older plants which had almost completed their flowering stage, depletion only was observed and no NO 3 enrichment. These data suggest that NO 3 enrichment results from N excretion from active nodulated roots of the legume, accounting for the increase in both biomass and nitrogen content of the companion grass in grass-legume association. The quantitative importance and periodicity of nitrogen excretion as well as the origin of nitrate enrichment are discussed.  相似文献   
8.
Abstract Serial dilutions of methanogenic sludges in propionate medium gave a methanogenic non-acetoclastic enrichment degrading 1 mol of propionate to 1.6 mol of acetate and 0.17 mol of methane, with a transient accumulation of butyrate. NMR recordings showed the conversion of [2-13C]- and [3-13C]-propionate to [3-13C]- and [4-13C]-butyrate, respectively, thus demonstrating a reductive carboxylation of propionate to butyrate. The labelling found in the accumulated acetate and fermentation balances also suggested that reductive carboxylation was the major pathway involved in propionate conversion to acetate.  相似文献   
9.
The present paper describes a simple technique that hardens the shell of nuts and makes the use of a tool to crack them open more compelling. Walnuts were coated with a dough of sawdust and nontoxic white glue in different combinations; they were tested for hardness by using machines normally used to test different kinds of wood. Data on relative hardness for uncoated walnuts and walnuts coated with dough of two different combinations are presented. The coated walnuts were significantly harder to break than the uncoated ones, whereas no significant difference was found when comparing the hardness of two types of coated walnuts. Furthermore, observations on a captive group of tufted capuchins (Cebus apella) are described. The monkeys needed significantly more time to break open the coated walnuts. Early results show that coated walnuts may favor acquistion of tool use skills in a juvenile capuchin.  相似文献   
10.
Abstract. Seedlings of Pinus radiata D. Don were grown in growth chambers for 22 weeks with two levels of phosphorus, under either well-watered or water-stressed conditions at CO2 concentrations of either 330 or 660mm3 dm?3. Plant growth, water use efficiency and conductance were measured and the relationship between these and needle photosynthetic capacity, water use efficiency and conductance was determined by gas exchange at week 22. Phosphorus deficiency decreased growth and foliar surface area at both CO2concentrations; however, it only reduced the maximum photosynthetic rates of the needles at 660 mm3 CO2 dm?3 (plants grown and measured at the same CO2 concentration). Water stress reduced growth and foliar surface area at both CO2 concentrations. Increases in needle photosynthetic rates appeared to be partly responsible for the increased growth at high CO2 where phosphorus was adequate. This effect was amplified by accompanying increases in needle production. Phosphorus deficiency inhibited these responses because it severely impaired needle photosynthetic function. The relative increase in growth in response to high CO2 was higher in the periodically water-stressed plants. This was not due to the maintenance of cell volume during drought. Plant water use efficiency was increased by CO2 enrichment due to an increase in dry weight rather than a decrease in shoot conductance and, therefore, transpirational water loss. Changes in needle conductance and water use efficiency in response to high CO2 were generally in the same direction as those at the whole plant level. If the atmospheric CO2 level reaches the predicted concentration of 660 mm3 dm?3 by the end of next Century, then the growth of P. radiata will only be increased in areas where phosphorus nutrition is adequate. Growth will be increased in drought-affected regions but total water use is unlikely to be reduced.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号